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Bifurcation diagrams of axisymmetric 
liquid bridges of arbitrary volume in electric 

and gravitational axial fields 
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41012 Seville, Spain 

Finite-amplitude bifurcation diagrams of axisymmetric liquid bridges anchored 
between two plane parallel electrodes subjected to a potential difference and in the 
presence of an axial gravity field are found by solving simultaneously the Laplace 
equation for the electric potential and the Young-Laplace equation for the interface 
by means of the Galerkinlfinite element method. Results show the strong stabilizing 
effect of the electric field, which plays a role somewhat similar to the inverse of the 
slenderness. It is also shown that the electric field may determine whether the 
breaking of the liquid bridge leads to two equal or unequal drops. Finally, the 
sensitivity of liquid bridges to an axial gravity in the presence of the electric field is 
studied. 

1. Introduction 
The statics of liquid bridges as a function of the slenderness A = L/2R (where L is 

the height and R the radius) and the non-dimensional volume r = V/nR2L is well 
established (Martinez 1983; Sanz & Martinez 1983; Martinez 1986). The effect of 
gravity upon its stability is also well known (Vega & Perales 1983; Meseguer, Sanz 
& Perales 1990). Recently, the application of an electric field has been considered 
with the aim of forming longer liquid bridges. Linear bifurcation studies have shown 
that the electric field always increases the value of the critical liquid bridge height 
thus increasing the stability region (Gonzalez et al. 1989; Ramos & Castellanos 1991). 
It turns out that for moderate values of electrical stresses this augmentation is 
approximately a linear function of the square of the applied electric field. The 
principal reason for the increase in liquid bridge stability is that the electric field 
always tends to suppress perturbations of the interface shape perpendicular to itself. 
This may be understood since there is a decrease in electrostatic energy stored in the 
system caused by these perturbations. In  particular, a sinusoidal deformation of a 
plane interface subjected to a tangential electric field induces polarization charges 
that perturb the field in such a way that the total electrostatic energy decreases. 
An elementary estimate of this variation per unit of volume leads to & W E  
(e1-e2)ESE < 0 (see figure 1) .  Given that a t  equilibrium with fixed potentials the 
electrostatic energy has to be a maximum (Jackson 1975), the latter effect implies 
that dielectric forces favour an interface parallel to the electric field. 

In  a companion paper to this one (Gonzalez & Castellanos 1993) a nonlinear 
bifurcation analysis is made in order to determine the way in which a cylindrical 
liquid bridge loses its stability in the presence of residual axial gravity. The method, 
based on the Lyapunov-Schmidt projection technique, is quite powerful but it is 
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FIGURE 1. Polarization charge and electric field distributions in a sinusoidal perturbation of a 
planar interface subjected to a tangential field. 

limited to small values of the perturbation amplitude around the cylinder and small 
gravitational Bond numbers. 

The aim of this paper is to extend the previous work to liquid bridges of arbitrary 
shape and finite values of the Bond number. The problem is analytically untractable 
so that we have to use numerical methods to compute the finite-amplitude 
bifurcation diagrams. Only the minimum volume stability limit curve will be studied 
and, consequently, the analysis will be restricted to axisymmetric bifurcating 
families. Non-axisymmetric bifurcating modes of instability are important for non- 
rotating liquid bridges only when we are studying the maximum volume stability 
limit curve (Bezdenejnykh, Meseguer & Perales 1992). This non-axisymmetric 
instability is characterized by the appearance of a bulge a t  the interface. For many 
purposes our study is sufficient in most practical situations since we are interested in 
elongating a given liquid bridge with the aid of electric fields keeping r and the Bond 
number fixed. This physical process typically lead us to the minimum volume 
stability limit curve (see figures 4 and 5 in Bezdenejnykh et al. 1992). 

The bifurcation diagrams allow us to know the nonlinear stability of liquid bridges 
(Iooss & Joseph 1980). We have chosen a finite-element method together with first- 
order continuation to  solve our problem. It is shown that the electric field, apart from 
increasing the domain of stability, may also change the symmetry of the preferred 
bifurcating family. 
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The equations and boundary conditions that govern the liquid bridge shape are 
presented in $2. In $3, the way that finite elements have been applied in the present 
problem is shown. I n  $4, the diagrams are drawn and conclusions about the stability 
obtained. 

2. Formulation of the problem 
Consider an insulating liquid bridge of volume V between two parallel electrodes 

a distance L apart and anchored on two equal disks of radius R. The anchoring is 
achieved by two coaxial sharp-edged rings of negligible height welded onto the 
electrodes so that a wide range of contact angles is allowed. This liquid bridge is 
surrounded by another insulating fluid and both are assumed to  be immiscible. The 
outer medium could be the vacuum itself. The problem a t  hand is the determination 
of the equilibrium shapes and stability of the bridge when a potential difference @,, 
is applied to the parallel electrodes and there is an axial gravity acceleration g (see 
figure 2). 

Concerning the electric problem, since there is neither volumetric charge nor 
permittivity gradients in the fluids, we have to solve the Laplace equation for the 
electrostatic potential 

If spatial coordinates are scaled with respect to R,  the electric field with respect to 
Em = G0/L and the pressure with respect to a/R (n = surface tension), the 
Young-Laplace equation augmented by the electrical pressure is written : 

V2@ = 0. ( 1 )  

The first term represents the capillary pressure, where R, and R, are the principal 
radii of curvature of the surface. The second term represents the electrostatic 
pressure jump, where E, and En are the electric field components, tangential and 
normal, respectively, to the surface, e is the electrical permittivity relative to the 
inner one, and x = ei Ek R / n  is a non-dimensional parameter representing the ratio 
between electric and capillary forces. The symbol A stands for the jump in a quantity 
as we cross the interface, AX = X ,  -Xi, where subscripts refer to the outer and inner 
liquids. The third term takes account of the gravity force and is proportional to the 
Bond number defined as yR2(p,-p,)/a (p = mass density). The last term represents 
the discontinuity of the reference pressure 17. As the media are assumed to be 
incompressible the electrostriction effect has not been considered. 

I n  cylindrical coordinates, axisymmetric liquid bridge shapes are conveniently 
described by r = f ( z )  ; where r and z are the radial and axial coordinates, respectively, 
and f is the shape function. The relevant boundary conditions for our configuration 
are : 

(i) Fixed contact lines and potentials a t  the electrodes: 

f( - A )  = f ( A )  = 1, @(r ,  - A )  = - A ,  @(?“,A) = A ,  (3) 

where @ has been scaled with respect to E ,  R. 

large distance : 
(ii) Axisymmetric finite potential on the axis, r = 0, and uniform electric field at  
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(iii) Continuous potentials and normal components of the electric displacement 
vectors in both media across the interface : 

Oi = Go, Eni = BE,, at r = f ,  ( 5 )  

where /3 stands for the permittivity ratio eo/ei. 
In addition, we have to include the volume constraint condition 

dzf2 = 2117, 
J -A  

noting that 7 = V/nR2L is the ratio between the real volume and that of the cylinder 
with the same R and L. Therefore, the set of unknowns isf(z), @(r, z ) ,  A17 and the set 
of independent parameters is A ,  r ,  x, /?, B. 

3. Numerical analysis 
The computation of liquid bridge shapes requires solving systems of equations that 

are nonlinear owing to the free interface, whose location is unknown. An iterative 
procedure is necessary to converge to a solution. Here we have used a numerical code 
based upon finite elements, following some ideas developed by Basaran & Scriven 
(1989). To use finite elements we need a bounded domain. Thus the boundary 
conditions at  infinity have been located at  a large distance, R,, from the axis of 
symmetry. 

The one-dimensional domain (liquid bridge profile) is tessellated into curve 
segments and the two-dimensional domain (inner and outer media) into quadri- 
laterals between spines z = constant (Saito & Scriven 1981). Because the potential 
solution is not smooth at interface corners (Strang & Fix 1973), the quadrilaterals 
close to the contact lines have been divided into triangles. Also, the grid pitch is finer 
near the contact lines and increases in geometric progression with increasing distance 
from them (see figure 3). The introduction of these triangular elements eliminates 
some numerical oscillations of the electrical pressure close to the anchoring lines that 
appeared in a pure quadrilateral mesh. This lack of smoothness may arise because 
each quadrilateral attached to the contact line bears two different boundary 
conditions (equations (3) and (5)) .  The quadrilateral and triangular elements are 
isoparametric biquadratic of nine nodes or isoparametric quadratic of six nodes, 
respectively (Strang & Fix 1973). The one-dimensional elements are quadratic, 
exploiting the fact that they constitute the edge of the previous bidimensional 
elements. With these assumptions the interface and the potential are represented by 

respectively, where [ and q denote the local coordinates of the isoparametric 
transformation, wi and wi represent the one-dimensional and two-dimensional basis 
functions respectively and fi and Gi are the values of these basis functions at the 
nodes. 

The Galerkin weighted residuals of the augmented Young-Laplace equation and 
the Laplace equation are formed by weighting (2) by f(z)vi(z) and (1) by wt(r,z). 
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FIGURE 3. Mesh of finite elements. 

Using the divergence theorem and boundary conditions to eliminate second-order 
derivatives we arrive at  the following set of algebraic equations for fi and cPi: 

( l + f ~ ) t v , + r f f i Z i z 6 + ( A ~ + x A ~ ~ + B ~ ) f ~ ~  dz = 0 (i = 1, ... , N ) ,  (9) 

(10) 

LA( (1 + f$ 1 
~ " * v ~ . v w i d r + ~ ~ " ~ V O . V ~ i d ~  = 0 (i = 1 ,..., N ) ,  

where the subscript z denotes differentiation with respect to z,  17, stands for the 
electrical pressure, +e(E,"-E;), and &, V,  are the inner and outer volumes. 

The Dirichlet boundary conditions (3) replace the equations associated with the 
nodes on the electrodes by equations of the form 

x c - X ,  = 0, (11)  
where xi are the unknowns ft or cPi on the electrodes and Xi the known values that 
they take. The volume constraint forms the necessary equation to determine the 
unknown A17 and is given by (6). This set of algebraic equations of N + M + 1  
unknowns can be reduced to a system of (N+l) unknowns by considering the 
electrical pressure as a function of the interfacial points, nE = n,( fi, . . . J N ) ,  since 
for a given interface the potential solution through the linear system (10) is unique. 

An auxiliary equation based on the arclength parameter is included to avoid a 
singular Jacobian matrix when limit points appear (Keller 1977), 

(x-x*).@ I -As = 0, 
ds Xt 

and the unknowns are supplemented with A the parameter that is being varied 
(either x, T or B).  In (12), x = (f,, . .. , f N ,  A n ,  A )  is the new set of unknowns, s is the 
arclength of the curve described by x, dxlds is the unit tangent vector to the solution 
curve and increments are taken with respect to a previously known solution x*. 

The (N+ 2) algebraic equations are schematically written as 

F(x)  = 0 ,  (13) 
where the auxiliary equation (12) is labelled by i = N +  2. 
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The derivative dx/ds is obtained from the previous solution by solving 

J(X*)-Y = ["I3 (14) 

where Jij  = aFi/i3xf, and dx/ds = y/lyl. 

guess xo and then calculating successive approximations in the usual way: 
The solution of the system is obtained via Newton method starting from an initial 

x k - J - l ( x k ) - F ( x k )  ( k  = 0 , 1 , 2  ,... ). (15) p + 1  = 

The Jacobian matrix J is analytically determined and is fully populated. To compute 
J, it is necessary to evaluate the derivatives of the electrical pressure and hence the 
derivatives of the electric field, 

If the linear system (10) is written as A.  6, = C, the derivatives aQi/afj are computed 
by solving 

using Cholesky factorization for the matrix A (Strang & Fix 1973). The derivatives 
of the basis functions and the coefficients of the linear system (17) are obtained by 
realizing that the nodes move along the spines proportionally to the node on the 
interface belonging to their spine. 

Since the Newton method has safe properties only if the initial guess is lose to the 
solution a continuation method of first order has been used. We begin from a known 
solution, for example the cylinder, and new estimates are obtained by first-order 
continuation of the arclength parameter, 

dx 
ds 

xO(S+AS) = x(s)+-As. 

In this way the error, defined as maxlx:+l-xfI, is reduced to less than lop5 with two 
or three iterations for typical values As = 0.01 - 0.1. An automatic selection of As has 
been used based upon the distance from the predictor xo to the solution x. 

Changes in stability are detected by the occurrence of either a shape bifurcation 
or a limit point (Iooss & Joseph 1980). A singularity of the Jacobian signals a 
bifurcation point. At a simple bifurcation, only one eigenvalue is zero. The Jacobian 
then passes through zero, changing its sign and so marking the location of the 
bifurcation. To track the new family, the critical eigenvector u of the Jacobian 
matrix is calculated by one-step inverse iteration and the initial estimate for the new 
branch is the critical solution plus a small vector in the direction of the eigenvector 
(Basaran & Scriven 1989), 

(19) 

and equation (12) is substituted by 

(20) 

x'(s* +As) = x(s*) + u AS, 

(X- x * ) . u  - AS = 0. 
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FIGURE 4. Critical eigenvector shapes for different A :  ---, A = 4; ---, A = 5; 
-.-, A = 6; ..., A = 7, 

Slenderness 
A 

3.50 
4.00 
4.50 
5.00 
6.00 
7.00 
8.00 

Bifurcation 
electrical number 
x, (analytical) 

1.6970 
3.8683 
5.9175 
7.9167 

11.924 
16.078 
20.454 

Bifurcation 
electrical number 

xFE (finite element) 

1.6936 
3.8698 
5.9292 
7.9462 

12.020 
16.292 
20.868 

% relative error 

0.20 
0.04 
0.20 
0.37 
0.80 
1.33 
2.02 

lool(X,-XFE)IXal 

TABLE 1 .  Accuracy of finite element approximation of bifurcation points 

The value of R, was chosen by looking a t  the convergence of the electrical pressure 
A n E  on given interfaces for increasing values of R, and with regular meshes. This 
value was taken as R, = 8 for A < 4 and R, = 2A for A > 4. The algorithm was 
programmed in FORTRAN and calculations were made on the CONVEX-240 a t  the 
University of Seville. A convergence study has shown that, for the situations 
considered in this paper, lO(axia1) x 14(radial) elements are enough to keep errors 
within 1 %. The geometric progression ratio between element lengths was chosen to 
be 1.2 for the axial and radial directions. The total number of unknowns ( N + M + 2 )  
was 632 and one Newton iteration took about 2.4 s of CPU time. 

The accuracy of these finite-element approximations has been tested by computing 
the critical values of 7 in the absence of electric field with or without gravity, and the 
critical values of x for cylindrical shapes, i.e. T = 1 and B = 0. The numerically 
obtained critical values 7, for B = 0 have errors compared with the analytical results 
of Martinez (1986) that are less than 0.06%. The numerical critical values xc are 
compared with the analytical values (GonzBlez et al. 1989) in table 1 for the case 
/3 = 0.55. This indicates that the accuracy is governed by the electrical problem. 



214 A. Ramos and A. Castellanos 

From the table we see that the accuracy of this finite-element approximation 
decreases with increasing slenderness A .  As an explanation, figure 4 shows some 
computed critical eigenvector shapes. These indicate a shifting of the maximum 
towards the extremes of the bridge for increasing A ,  a h e r  mesh near the contact 
lines then being necessary to maintain the accuracy. A reduction in the errors was 
subsequently verified. 

4. Results and discussion 
Most of the following results will be for the case in which permittivity ratio 

p = 0.55, slenderness values A < 7 and the Bond number is of small value in order 
to compare with known theoretical and experimental data given in Gonzilez et al. 
(1989) and with the Lyapunov-Schmidt method (Gonzalez & Castellanos 1993). 
First, we will compute the bifurcation diagrams for liquid bridges in the absence of 
gravity then subsequently include the effect of a residual gravity. 

4.1. Absence of gravity 

Let us recall briefly the main features of the equilibrium shapes before considering 
the nonlinear bifurcation diagrams. In  figure 5 we present a stable liquid bridge and 
equipotentials of the linear potential perturbation, i.e. !P = cip -2, for two applied 
electric field strengths in the case A = 3, T = 2. Y is the contribution of the 
polarization charges to the total potential. Because there is no gravitational force the 
shapes are reflectionally symmetric and the equipotential is antisymmetric about the 
midplane z = 0. This leads to a symmetric electrical pressure. The main effect of the 
electric field is to align the interface along its direction. The same behaviour was 
obtained for different permittivity ratios and volumes (Ramos & Castellanos 1991). 

4.1.1. The cylindrical solution 

given by : 

It is well known from the studies of Plateu and Rayleigh that in the absence of an 
electric field, the cylinder is stable for A values lower than x. At the stability limit 
there is a subcritical bifurcation with the bifurcation eigenvector showing an 
antisymmetric shape about the midplane z = 0 (Martinez 1983; Vega & Perales 
1983). When the electric field is imposed, the bifurcation criterion for slenderness 
increases as a function of the applied electric field, i.e. A,  = A, (x ) ,  and the bifurcation 
eigenvector is also antisymmetric (Gonzalez et al. 1989). 

Here we have extended the study of the bifurcating family to finite amplitude 
perturbations and arbitrary values of the electric field. Shown in figure 6 is the 
amplitude of the bifurcating family for p = 0.55 and different A values in terms of 
the parameter 

The cylinder exists for any value of ~3,  x, A ,  provided T = 1 and B = 0, and it is 

f(~)= 1, AZI=-1-+(/3-I)x, @ ( ~ , z ) = z .  (21) 

E = (Lr 211 -,, (f(z)- l ) zdz r ,  

which is the L, norm measure of the distance from the equilibrium shape to the 
cylindrical one, as a function of x. From this figure it is evident that the bifurcation 
remains subcritical, the stable cylinders are those with x greater than the bifurcating 
one. Each point on the bifurcating branches represents two possible non-symmetrical 
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FIGURE 5. Equipotentials of Y = @-z for a liquid bridge with r = 2, /3 = 0.5, A = 3 subjected to 
an electric field: (a)  x = 0.01 and ( b )  x = 5. Equipotential values grow from dotted lines to solid 
ones. 
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FIGURE 6. The effect of A on liquid bridge stability: E as a function of x of the bifurcating 
branches for liquid bridges with T = 1 ,  /3 = 0.55. 

shapes, with the neck above or below the midplane z = 0. Locally the bifurcating 
branches are of the form 

X = X c  +;KC', (23) 

where K is the curvature. The computed K values grow with A .  For example, K = 46.8 
for A = 3.142 and K = 73.6 for A = 5 .  Hence, the liquid bridge is more sensitive to 
finite-amplitude perturbations of a given shape as A increases. However, we should 
bear in mind that to impose a given deformation on the interface may be more 
demanding energetically when there is an electric field. 
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7 

FIGURE 7 .  e2 as a function of r for a liquid bridge with A = 2.6, x = 0. Stable shapes are 
represented by a solid line. 

4.1.2. Arbitrary volume 
In the absence of an electric field, static considerations have shown that when the 

minimum volume stability limit is reached a bifurcation to unstable equilibrium 
shapes occurs whose character depends on the slenderness (Meseguer, Sanz & Rivas 
1983; Sanz & Martinez 1983). For values of A < 2.128, the stability criterion is 
marked by a limit point and consequently the critical eigenvector carries all the 
symmetry of the equilibrium state. Accordingly the breaking process should be 
symmetrical leading in the final state to two drops of equal volume. On the contrary 
for A > 2.128 the stability criterion is marked by a bifurcation point with a non- 
symmetric bifurcating family. This breaking of symmetry would lead to a rupture of 
the liquid bridge in two unequal drops. Experiments show a symmetrical ( A  < 2.128) 
or non-symmetrical ( A  > 2.128) disruption of the liquid bridge corresponding to 
turning points or simple bifurcation points (Sanz & Martinez 1983), in agreement 
with the theoretical findings. 

Figure 7 shows the finite bifurcation diagram computed by our method for a liquid 
bridge of A = 2.6 in the absence of an electric field. The order parameter is 2, the 
squared distance from the cylindrical shape. Only those liquid bridges with non- 
dimensional volumes greater than 7, = 0.725, the bifurcation volume, are stable. We 
may form, for example, a cylindrical liquid bridge. If we now extract liquid in a 
quasi-static way we move leftwards along the equilibrium curve until we get to the 
point P ,  corresponding to 7, = 0.725, where a non-symmetric bifurcating family 
exists, leading to a non-symmetrical disruption of the newly formed liquid bridge. 

Similar bifurcation diagrams are obtained for increasing values of A ,  the main 
effect being a rightwards displacement of the point P along the corresponding curve, 
i.e. for A = 71 it is placed at T = 1. For decreasing values of A the bifurcating branch 
is displaced leftwards along the corresponding curve. For A = 2.128 the point P 
reaches the turning point. Further decreasing A moves P along the upper branch of 
the symmetric shape family. Thus for A < 2.128 the bifurcating branch location does 
not define the stability criterion anymore. 

The role of the parameter A upon the nature of the disruption of the liquid bridge 
has been considered in some detail because the influence of the electric field upon the 
stability resembles in many ways the role played by A-l.  This will be illustrated in 
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FIGURE 8. The effect of x on the stability: 2 as a function of T for a liquid bridge 
with A = 2.6, B = 0.55. 
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FIGURE 9. The effect of x on the stability : 2 as a function of T for a liquid bridge 
with A = 3.5, B = 0.55. 

figures 8 and 9. In figure 8 the influence of the electric field upon the stability of a 
liquid bridge of A = 2.6 is depicted. We see that the electric field modifies the 
bifurcation diagram in two ways. First, the position of the turning and bifurcation 
points changes towards smaller values of 7 : a consequence of the stabilizing effect of 
the electric field. Secondly, the relative location of the two critical points is shifted 
occasionally giving rise to an interchange of the turning and bifurcation points, 
similar to the case of A decreasing. Thus, for a cylindrical liquid bridge subjected to an 
electric field, x = 7,  extracting fluid will allow us to attain a minimum critical volume 
7, = 0.518 that will then break into two equal drops. 

Figure 9 illustrates the stabilizing effect of the electric field for a liquid bridge of 
A = 3.5. On increasing the electric field the bifurcating branch is displaced leftwards 
thus decreasing the critical volume physically attainable. We could continue to 
increase the value of and again we would have an interchange of the turning and 

8 FLM 249 
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FIQURE 10. Neutral stability curves in the (A ,  x)-plane for different 7. 

The permittivity ratio is fixed, /3 = 0.55. 

bifurcation point, as illustrated in figure 8. As in this case A > x, the cylinder is 
unstable in the absence of electric field and the bifurcation for x = 0 occurs for 7 > 1.  
The effect of an increase in A is to  shift the critical points to greater values of r. 

Figure 10 shows the neutrally stable, singular points in the ( A ,  X)-plane for a set 
of values of 7 and fixed /3 = 0.55. A liquid bridge can be held stable only if the set 
(x, A )  belongs to the upper region delimited by the corresponding 7 curve. For x = 0, 
the results of minimum volume without electric field are recovered. The curve 7 = 1 
corrsponds to the bifurcation curve of the cylindrical family. We see that the 
increment of the electric field allows us to elongate liquid columns of a given T .  Also, 
we can reduce the volume of a bridge, keeping it stable, by increasing the electric 
field. 

Finally, we examine briefly the role of the parameter /3. Because the statics of the 
liquid bridge is dominated by the interfacial dielectric force, and this force is zero for 
p = 1 (equal permittivities of the outer and inner liquids) it is clear that /3 has to be 
different from 1. It has been shown (GonzBlez et al. 1989) that p and p' play a similar 
role, it  being of little consequence which of the two liquids forms the bridge. In  fact 
the difference between p and f 1  may be ascribed to the presence of a finite curvature 
of the interface and should be zero for a plane interface. I n  figure 11 the minimum 
critical volume for a liquid bridge of fixed slenderness A = 3 as a function of x is 
represented. We see that for = 1 the critical volume is independent of the electric 
field, 7, = 0.914, whilst for values of /3 differing from unity the critical volume 
decreases. For a given value of x the latter volume decreases as the permittivity 
difference between the outer and inner liquid increases. Notice that for /3 = 3 and for 
/3 = 0.3 x the two curves are close to each other, agreeing with the qualitative 
symmetry of the system to the interchange of the liquids. 

4.2. Gravity effect 
The influence of an axial gravity on the stability of liquid bridges is well known (Vega 
& Perales 1983; Meseguer et al. 1990). The axial gravitational forces distinguish 
between a non-symmetrical shape and its reflected one around the midplane x = 0. 
This breaking of symmetry excludes the cylinder as a possible solution for the case 
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FIGURE 11. Neutral stability curves in the (x,~)-plane for different B. 
The slenderness is fixed, A = 3. 
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FIGURE 12. Equipotentials of Y = @ - z  for a liquid bridge with T = 1, /3 = 0.5, A = 2.5 subjected 
to an electric field and an axial gravity B = 0.06. (a) x = 0.01 and ( b )  x = 5. Equipotential values 
grow from dotted lines to solid ones. 

7 = 1. Instead equilibrium forms will be amphoric, with the amphora neck above 
(below) the midplane for positive (negative) values of the Bond number. Also, an 
axial gravity causes the liquid bridge to be less stable for a fixed slenderness or, 
alternatively, the critical slenderness decreases as we increase the gravitational Bond 
number for a given 7. Here we extend this analysis to determine the effect of electric 
fields on the equilibrium shapes and stability. As already mentioned we will restrict 
the analysis to values of the Bond number B < 0.1. 

As in the absence of gravity we present first the equilibrium shapes of liquid 
bridges subjected to an applied electric field in the presence of gravity. In figure 12 
liquid shapes and equipotentials of Y = 0 - 2 are shown for a liquid bridge subjected 

8-2 
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FIGURE 13. The effect of B on liquid bridge stability: e as a function of x for liquid bridges with 
7 = 1, A = 4, /3 = 0.55. ..., curves obtained by the Lyapunov-Schmidt method for comparison. 

to a gravity strength B = 0.06 for two different values of x in the case r = 1,  A = 2.5. 
These shapes correspond to stable liquid bridges. The alignment of the interface with 
the symmetry axis for increasing field is evident. We see that for B + 0 these shapes 
are no longer reflectionally symmetric but they resemble the non-symmetric 
bifurcating family of the case B = 0, which is the reason of the breakdown of the 
pitchfork bifurcation. The potential perturbation, Y, is close to being symmetric and 
so the electrical pressure perturbation is close to being antisymmetric. In  this sense 
the electrical pressure perturbation follows the symmetry of the shapes. 

4.2.1. Quasicylinders (7 = 1) 
The influence of axial residual gravity on the stability of cylindrical liquid bridges 

has been analysed in detail in Vega & Perales (1983). It has been shown that the 
effect of gravity is to change the nature of the bifurcation from a pitchfork 
bifurcation to two separated branches with the stable branch now losing its stability 
through a limit point. A semianalytical study based on the Lyapunov-Schmidt 
method has also included the effect of the electric field (Gonzalez & Castellanos 1993). 
From the latter local study we see that gravity always breaks the subcritical 
pitchfork bifurcation in two isolated solutions. Here we extend the previous analysis 
to finite-amplitude perturbations of the equilibrium shape. 

Figure 13 shows the deformation E as a function of x for r = 1 and A = 4 in two 
cases : without gravity, B = 0, and with a residual gravity, B = 0.01. For comparison, 
the local diagram obtained by the Lyapunov-Schmidt method (Gonzilez & 
Castellanos 1993) is also presented (dotted line). Negative values of E correspond to 
shapes that have their neck below the plane z = 0. As the gravitational field has 
broken the original symmetry, the subcritical bifurcation disappears giving two 
separate equilibrium families. The stable branch is the one connected to the stable 
cylinders when x+ 00 and E +  0. As is evident from the figure, the new critical electric 
field is determined by a limit point and is greater than the non-gravitational 
bifurcation field. From the comparison with the local method we see that there is a 
very good agreement for 161 < 0.2. This can be used as a rule to estimate the range of 
validity of the local results. For this Bond number, B = 0.01, the computed critical 
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FIGURE 14. The effect of x on liquid bridge stability: B as a function of B for liquid bridges 

with 7 = 1, A = 4, p = 0.55. 

values of x are xc = 5.856 by the present method and xc  = 5.814 by the pertubation 
method, a difference only of 0.7 %. 

Figure 14 shows the deformation E as a function of B for three values of x in the 
case r = 1, A = 4. Negative values of e correspond to inverted amphoras. It is 
obvious from the figure that there exists a complete symmetry between the cases 
B > 0 and B < 0. The number of solutions passes from one to three owing to the 
electric field. For x = 0 the equilibrium shapes are not stable (notice that A = 4 > IT), 
the reason for the appearance of the stable shape region (between the two limit 
points) is the stabilizing effect of the electric field. This region grows with the electric 
field. 

The shift in critical value of the electrical parameter as a function of B is depicted 
in figure 15 on a logarithmic scale. The theory of bifurcation predicts a change of the 
critical x with respect to the no-gravity bifurcation x proportional to &, i.e. 
Ixc-xo( = c&, for small B,  based only in symmetry arguments (Gonzalez & 
Castellanos 1993). Two cases with different A are presented. The tangent of these 
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FIGURE 16. Neutral stability curves in the (A ,  X)-plane for different B in the case p = 0.55, 

T = 1. . . . , the Lyapunov-Schmidt method. 0, experimental data. 

curves numerically obtained approaches 0.66. Also we see that the proportionality 
constant c increases for increasing A indicating a greater sensitivity of the liquid 
bridge with B. 

Figure 16 shows the neutral stability curves in the (A,~)-plane for bridges with 
cylindrical volume, i.e. T = 1, and for different values of B. For comparison, the 
neutral stability curves (dotted lines for B = O,O.OOl ,  0.01,O.l) obtained by the 
Lyapunov-Schmidt method are presented. The experimental data given by Gonzilez 
et al. (1989) are also shown. As in figure 10 the stable region is above each curve. We 
can see that the curve corresponding to B = 0 is the maximum limit of stability and 
the gravity effect is to increase the necessary field to hold the bridge. The neutral 
stability curves diverge for increasing A showing that the gravity influence is more 
important as the slenderness increases. As in the absence of the electric field the 
liquid bridge is more sensitive to B with A .  From a comparison with the local method 
we see a fair agreement for values of B < 0.01 so the transition from B = 0.01 to 
B = 0.1 marks an accuracy limit of the local results in the chosen range of A .  The 
comparison with the experimental data tells us that, for low values of the electric 
field, the experimental points lie on the curve corresponding to B = 0.01 and these 
points approach B = 0 for large values. Since the temperature in those experiments 
was not carefully controlled the experimental points could correspond to different 
values of the Bond number, as the density difference is dependent on temperature. 
Nevertheless, this discrepancy may be due to the nature of the anchoring (an 
increment of the local field close to the rings) and, in any case, a more careful 
determination of the physical parameters seems to be necessary to have a better 
agreement. 

4.2.2. Arbitrary volume 
Let us now consider liquid bridges with 7 += 1. For these cases the influence of B 

on the equilibrium shape, as well as the determination of the critical volume in the 
absence of the electric field, has been obtained numerically. The results show a 
greater sensitivity of the liquid column to the number B for increasing values of the 
slenderness (Meseguer & Sanz 1985; Meseguer et al. 1990). 
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FIGURE 17. The effect of B on liquid bridge stability: e2 as a function of T for the case 
A = 2.6 and x = 0. 
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FIGURE 18. The effect of x on liquid bridge stability: e2 as a function of T for the case 
A = 2.6 and B = 0.01. 

We present in figure 17 the bifurcation diagram computed using our method for 
the case A = 2.6 for B = 0 and B = 0.01. It is apparent from the figure that the 
bifurcation point has disappeared and the symmetric and non-symmetric family 
branches have given rise to two separated branch solutions. The stable branch loses 
its stability through a limit point but contrary to the case where gravity is absent 
the disruption is now non-symmetrical. The new critical value of the volume is 
greater showing the destabilizing nature of the gravitational forces. 

The presence of the electric field modifies this diagram in three ways (see figure 18). 
First, for a given value of the Bond number and a fixed value of 7 the electric field 
decreases the value of E .  This means that the shape becomes more cylindrical a fact 
already familiar to us. Secondly, the stable branch (the only one shown to avoid 
unnecessary details) increases in length with the electric field, stabilizing the column 
for smaller values of the liquid volume. Thirdly, the relative change of the critical 7 
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with respect to the non-gravitational bifurcation r (see figure 8), i.e. AT = 1 ~ , - ~ ~ 1 ,  is 
smaller for increasing values of x. In  the present case, AT decreases from AT = 0.07 
for x = 0 t o  AT = 0.01 for x = 7. The same happens for decreasing A ,  so as a general 
result liquid bridges are less sensitive to a residual axial gravity when either x 
increases or A decreases. 

5. Conclusions 
An algorithm based upon the Galerkin/finite element method has been applied to 

determine equilibrium shapes and stability limits of axisymmetric liquid bridges 
anchored between two plane parallel plates subjected to a potential difference and in 
the presence of gravity. 

The effect of the applied electric field on the bridge shapes is to make them more  
cyl indrical ,  i.e. to align the interface with its vertical axis. This qualitative behaviour 
is independent of which liquid forms the bridge, of its volume and of the residual 
gravity. This is the reason why the electric field always increases the stability of the 
liquid column. 

Axisymmetric liquid bridges may lose their stability either in limit or in 
bifurcation points for the case B = 0 and in limit points for the case B =k 0. For B = 0, 
the limit points will be the stability limit if 7 is small enough. Since the electric field 
allows us t o  reduce the volume necessary to hold a liquid bridge, it can change the 
way of the breaking process towards a symmetrical disruption because limit and 
bifurcation points approach each other for decreasing r .  In  the absence of the electric 
field a similar effect happened for decreasing A .  

The liquid columns of the bifurcating family have non-symmetric shapes that 
resemble the shapes found in the presence of gravity. Gravity breaks the original 
symmetry and distinguishes between the two bifurcating shapes, with its neck above 
or below the plane x = 0, this being the reason for the breaking in the bifurcation 
diagram. Thus the effect of residual axial gravity upon the stability is very 
pronounced. This effect decreases with A-1? showing that the sensitivity to gravity 
increases with the slenderness. Similarly, for a fixed A the gravity effect decreases as 
x increases. We may then conclude that the effect of the electric field on liquid 
bridges is somewhat similar to the effect of the inverse of the slenderness. 
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